Monte Carlo Simulations for Dosimetry in Prostate Radiotherapy with Different Intravesical Volumes and Planning Target Volume Margins
نویسندگان
چکیده
In prostate radiotherapy, the influence of bladder volume variation on the dose absorbed by the target volume and organs at risk is significant and difficult to predict. In addition, the resolution of a typical medical image is insufficient for visualizing the bladder wall, which makes it more difficult to precisely evaluate the dose to the bladder wall. This simulation study aimed to quantitatively investigate the relationship between the dose received by organs at risk and the intravesical volume in prostate radiotherapy. The high-resolution Visible Chinese Human phantom and the finite element method were used to construct 10 pelvic models with specific intravesical volumes ranging from 100 ml to 700 ml to represent bladders of patients with different bladder filling capacities during radiotherapy. This series of models was utilized in six-field coplanar 3D conformal radiotherapy simulations with different planning target volume (PTV) margins. Each organ's absorbed dose was calculated using the Monte Carlo method. The obtained bladder wall displacements during bladder filling were consistent with reported clinical measurements. The radiotherapy simulation revealed a linear relationship between the dose to non-targeted organs and the intravesical volume and indicated that a 10-mm PTV margin for a large bladder and a 5-mm PTV margin for a small bladder reduce the effective dose to the bladder wall to similar degrees. However, larger bladders were associated with evident protection of the intestines. Detailed dosimetry results can be used by radiation oncologists to create more accurate, individual water preload protocols according to the patient's anatomy and bladder capacity.
منابع مشابه
Effect of Gold Nanoparticles on Prostate Dose Distribution under Ir-192 Internal and 18 MV External Radiotherapy Procedures Using Gel Dosimetry and Monte Carlo Method
Background: Gel polymers are considered as new dosimeters for determining radiotherapy dose distribution in three dimensions.Objective: The ability of a new formulation of MAGIC-f polymer gel was assessed by experimental measurement and Monte Carlo (MC) method for studying the effect of gold nanoparticles (GNPs) in prostate dose distributions under the internal Ir-192 and external 18MV radiothe...
متن کاملThe Role of MRSI in Target Volume Definition for Radiation Therapy of Prostate Cancer
Introduction: Recently, magnetic resonance spectroscopic imaging (MRSI), as a functional imaging method, has been used for clinical target volume definition. In this study, we used this method to define the target volume in prostate radiotherapy. Material and Method: In this study, we used images of 20 prostate cancer cases. MRSI and MRI images were fused with CT images. Then, treatment plannin...
متن کاملEffect of Beta Particles Spectrum on Absorbed Fraction in Internal Radiotherapy
Objective(s): The purpose of this research is to study the effect of beta spectrum on absorbed fraction ( ) and to find suitable analytical functions for beta spectrum absorbed fractions in spherical and ellipsoidal volumes with a uniform distribution for several radionuclides that are commonly used in nuclear medicine.Methods: In order to obtain the beta particle absorbed fraction, Monte Carlo...
متن کاملEvaluating Performance of Algorithms in Lung IMRT: A Comparison of Monte Carlo, Pencil Beam, Superposition, Fast Superposition and Convolution Algorithms
Background: Inclusion of inhomogeneity corrections in intensity modulated small fields always makes conformal irradiation of lung tumor very complicated in accurate dose delivery.Objective: In the present study, the performance of five algorithms via Monte Carlo, Pencil Beam, Convolution, Fast Superposition and Superposition were evaluated in lung cancer Intensity Modulated Radiotherapy plannin...
متن کاملPenumbra Measurements and Comparison of In-House and Standard Circular Cones by the Gafchoromic Film, Pinpoint Ion Chamber, and MCNPX Monte Carlo Simulation
Introduction: Penumbra is an important property of the radiation beam to obtain a suitable margin surrounding the target volume. Therefore, the precise penumbra width determination in stereotactic radiotherapy is necessary for treatment planning. This study aimed to compare the obtained results of penumbra width by in-house and standard circul...
متن کامل